SR 71 “Blackbird”, Dulles

SR 71

The Lockheed SR-71 "Blackbird" was an advanced, long-range, Mach 3+ strategic reconnaissance aircraft.[1] It was developed as a black project from the Lockheed A-12 reconnaissance aircraft in the 1960s by the Lockheed Skunk Works. Clarence "Kelly" Johnson was responsible for many of the design’s innovative concepts. During reconnaissance missions the SR-71 operated at high speeds and altitudes to allow it to outrace threats. If a surface-to-air missile launch was detected, the standard evasive action was simply to accelerate and outrun the missile.

The SR-71 served with the U.S. Air Force from 1964 to 1998. Although twelve of the 32 aircraft built were destroyed in accidents, none were lost to enemy action. The SR-71 was unofficially named the Blackbird, and called the Habu by its crews, referring to an Okinawan species of pit viper. Since 1976, it has held the world record for the fastest air-breathing manned aircraft, a record previously held by the YF-12.

First retirement

In the 1970s, the SR-71 was placed under closer congressional scrutiny and, with budget concerns, the program was soon under attack. Both Congress and the USAF sought to focus on newer projects like the B-1 Lancer and upgrades to the B-52 Stratofortress, whose replacement was being developed. While the development and construction of reconnaissance satellites was costly, their upkeep was less than that of the nine SR-71s then in service.

The SR-71 had never gathered significant supporters within the Air Force, making it an easy target for cost-conscious politicians. Also, parts were no longer being manufactured for the aircraft, so other airframes had to be cannibalized to keep the fleet airworthy. The aircraft’s lack of a datalink (unlike the Lockheed U-2) meant that imagery and radar data could not be used in real time, but had to wait until the aircraft returned to base. The Air Force saw the SR-71 as a bargaining chip which could be sacrificed to ensure the survival of other priorities. A general misunderstanding of the nature of aerial reconnaissance and a lack of knowledge about the SR-71 in particular (due to its secretive development and usage) was used by detractors to discredit the aircraft, with the assurance given that a replacement was under development. In 1988, Congress was convinced to allocate $160,000 to keep six SR-71s (along with a trainer model) in flyable storage that would allow the fleet to become airborne within 60 days. The USAF refused to spend the money. While the SR-71 survived attempts to be retired in 1988, partly due to the unmatched ability to provide high quality coverage of the Kola Peninsula for the US Navy, the decision to retire the SR-71 from active duty came in 1989, with the SR-71 flying its last missions in October that year.

Funds were redirected to the financially troubled B-1 Lancer and B-2 Spirit programs. Four months after the plane’s retirement, General Norman Schwarzkopf, Jr., was told that the expedited reconnaissance which the SR-71 could have provided was unavailable during Operation Desert Storm. However, it was noted by SR-71 supporters that the SR-71B trainer was just coming out of overhaul and that one SR-71 could have been made available in a few weeks, and a second one within two months. Since the aircraft was recently retired, the support infrastructure was in place and qualified crews available. The decision was made by Washington not to bring the aircraft back.

Reactivation

Due to increasing unease about political conditions in the Middle East and North Korea, the U.S. Congress re-examined the SR-71 beginning in 1993. At a hearing of the Senate Committee on Armed Services, Senator J. James Exon asked Admiral Richard C. Macke:

“If we have the satellite intelligence that you collectively would like us to have, would that type of system eliminate the need for an SR-71… Or even if we had this blanket up there that you would like in satellites, do we still need an SR-71?”

Macke replied,

“From the operator’s perspective, what I need is something that will not give me just a spot in time but will give me a track of what is happening. When we are trying to find out if the Serbs are taking arms, moving tanks or artillery into Bosnia, we can get a picture of them stacked up on the Serbian side of the bridge. We do not know whether they then went on to move across that bridge. We need the data that a tactical, an SR-71, a U-2, or an unmanned vehicle of some sort, will give us, in addition to, not in replacement of, the ability of the satellites to go around and check not only that spot but a lot of other spots around the world for us. It is the integration of strategic and tactical."

Rear Admiral Thomas F. Hall addressed the question of why the SR-71 was retired, saying it was under "the belief that, given the time delay associated with mounting a mission, conducting a reconnaissance, retrieving the data, processing it, and getting it out to a field commander, that you had a problem in timeliness that was not going to meet the tactical requirements on the modern battlefield. And the determination was that if one could take advantage of technology and develop a system that could get that data back real time… that would be able to meet the unique requirements of the tactical commander." Hall stated that "the Advanced Airborne Reconnaissance System, which was going to be an unmanned UAV" would meet the requirements but was not affordable at the time. He said that they were "looking at alternative means of doing [the job of the SR-71]."

Macke told the committee that they were "flying U-2s, RC-135s, and other strategic and tactical assets" to collect information in some areas.

Senator Robert Byrd and other Senators complained that the "better than" successor to the SR-71 had yet to be developed at the cost of the "good enough" serviceable aircraft. They maintained that, in a time of constrained military budgets, designing, building, and testing an aircraft with the same capabilities as the SR-71 would be impossible.

Congress’ disappointment with the lack of a suitable replacement for the Blackbird was cited concerning whether to continue funding imaging sensors on the U-2. Congressional conferees stated the "experience with the SR-71 serves as a reminder of the pitfalls of failing to keep existing systems up-to-date and capable in the hope of acquiring other capabilities."

It was agreed to add $100 million to the budget to return three SR-71s to service, but it was emphasized that this "would not prejudice support for long-endurance UAVs such as the Global Hawk." The funding was later cut to $72.5 million. The Skunk Works was able to return the aircraft to service under budget, coming in at $72 million.

Colonel Jay Murphy (USAF Retired) was made the Program Manager for Lockheed’s reactivation plans. Retired Air Force Colonels Don Emmons and Barry MacKean were put under government contract to remake the plane’s logistic and support structure. Still-active Air Force pilots and Reconnaissance Systems Officers (RSOs) who had worked with the aircraft were asked to volunteer to fly the reactivated planes. The aircraft was under the command and control of the 9th Reconnaissance Wing at Beale Air Force Base and flew out of a renovated hangar at Edwards Air Force Base. Modifications were made to provide a data-link with "near real-time" transmission of the Advanced Synthetic Aperture Radar’s imagery to sites on the ground.

Second retirement

The reactivation met much resistance: the Air Force had not budgeted for the aircraft, and UAV developers worried that their programs would suffer if money was shifted to support the SR-71s. Also, with the allocation requiring yearly reaffirmation by Congress, long-term planning for the SR-71 was difficult. In 1996, the Air Force claimed that specific funding had not been authorized, and moved to ground the program. Congress reauthorized the funds, but, in October 1997, President Bill Clinton used the line-item veto to cancel the $39 million allocated for the SR-71. In June 1998, the Supreme Court of the United States ruled that the line-item veto was unconstitutional. All this left the SR-71’s status uncertain until September 1998, when the Air Force called for the funds to be redistributed. The plane was permanently retired in 1998. The Air Force quickly disposed of their SR-71s, leaving NASA with the two last flyable Blackbirds until 1999. All other Blackbirds have been moved to museums except for the two SR-71s and a few D-21 drones retained by the NASA Dryden Flight Research Center.

SR-71 timeline

Important dates pulled from many sources.
24 December 1957: First J58 engine run.
1 May 1960: Francis Gary Powers is shot down in a Lockheed U-2 over the Soviet Union.
13 June 1962: SR-71 mock-up reviewed by Air Force.
30 July 1962: J58 completes pre-flight testing.
28 December 1962: Lockheed signs contract to build six SR-71 aircraft.
25 July 1964: President Johnson makes public announcement of SR-71.
29 October 1964: SR-71 prototype (#61-7950) delivered to Palmdale.
7 December 1964: Beale AFB, CA announced as base for SR-71.
22 December 1964: First flight of the SR-71 with Lockheed test pilot Bob Gilliland at AF Plant #42.
21 July 1967: Jim Watkins and Dave Dempster fly first international sortie in SR-71A #61-7972 when the Astro-Inertial Navigation System ( ANS ) fails on a training mission and they accidentally fly into Mexican airspace.
3 November 1967: A-12 and SR-71 conduct a reconnaissance fly-off. Results were questionable.
5 February 1968: Lockheed ordered to destroy A-12, YF-12, and SR-71 tooling.
8 March 1968: First SR-71A (#61-7978) arrives at Kadena AB to replace A-12s.
21 March 1968: First SR-71 (#61-7976) operational mission flown from Kadena AB over Vietnam.
29 May 1968: CMSgt Bill Gornik begins the tie-cutting tradition of Habu crews neck-ties.
3 December 1975: First flight of SR-71A #61-7959 in "Big Tail" configuration.
20 April 1976: TDY operations started at RAF Mildenhall in SR-71A #17972.
27 July 1976 – 28 July 1976: SR-71A sets speed and altitude records (Altitude in Horizontal Flight: 85,068.997 ft (25,929.030 m) and Speed Over a Straight Course: 2,193.167 mph).
August 1980: Honeywell starts conversion of AFICS to DAFICS.
15 January 1982: SR-71B #61-7956 flies its 1,000th sortie.
21 April 1989: #974 was lost due to an engine explosion after taking off from Kadena AB. This was the last Blackbird to be lost, and was the first SR-71 accident in 17 years.[3][4] 22 November 1989: Air Force SR-71 program officially terminated.
21 January 1990: Last SR-71 (#61-7962) left Kadena AB.
26 January 1990: SR-71 is decommissioned at Beale AFB, CA.
6 March 1990: Last SR-71 flight under SENIOR CROWN program, setting four speed records enroute to Smithsonian Institution.
25 July 1991: SR-71B #61-7956/NASA #831 officially delivered to NASA Dryden.
October 1991: Marta Bohn-Meyer becomes first female SR-71 crew member.
28 September 1994: Congress votes to allocate $100 million for reactivation of three SR-71s.
26 April 1995: First reactivated SR-71A (#61-7971) makes its first flight after restoration by Lockheed.
28 June 1995: First reactivated SR-71 returns to Air Force as Detachment 2.
28 August 1995: Second reactivated SR-71A (#61-7967) makes first flight after restoration.
2 August 1997: A NASA SR-71 made multiple flybys at the EAA AirVenture Oshkosh air show. It was then supposed to perform a sonic boom at 53,000 feet (16,000 m) after a midair refueling, but a fuel flow problem caused it to divert to Milwaukee. Two weeks later, the pilot’s flight path brought him over Oshkosh again, and there was, in fact, a sonic boom.
19 October 1997: The last flight of SR-71B #61-7956 at Edwards AFB Open House.
9 October 1999: The last flight of the SR-71 (#61-7980/NASA 844).
September 2002: Final resting places of #956, #971, and #980 are made known.
15 December 2003: SR-71 #972 goes on display at the Steven F. Udvar-Hazy Center in Chantilly, Virginia.

Records

#61-7958 on display in Kalamazoo Aviation History Museum, Portage, Michigan
The SR-71 was the world’s fastest and highest-flying operational manned aircraft throughout its career. On 28 July 1976, SR-71 serial number 61-7962 broke the world record for its class: an "absolute altitude record" of 85,069 feet (25,929 m).

Several aircraft exceeded this altitude in zoom climbs but not in sustained flight. That same day SR-71, serial number 61-7958 set an absolute speed record of 1,905.81 knots (2,193.2 mph; 3,529.6 km/h).

The SR-71 also holds the "Speed Over a Recognized Course" record for flying from New York to London distance 3,508 miles (5,646 km), 1,435.587 miles per hour (2,310.353 km/h), and an elapsed time of 1 hour 54 minutes and 56.4 seconds, set on 1 September 1974 while flown by U.S. Air Force Pilot Maj. James V. Sullivan and Maj. Noel F. Widdifield, reconnaissance systems officer (RSO). This equates to an average velocity of about Mach 2.68, including deceleration for in-flight refueling. Peak speeds during this flight were probably closer to the declassified top speed of Mach 3.2+. For comparison, the best commercial Concorde flight time was 2 hours 52 minutes, and the Boeing 747 averages 6 hours 15 minutes.

In April 26, 1971 61-7968 flown by Majors Thomas B. Estes and Dewain C. Vick flew over 15,000 miles (24,000 km) in 10 hrs. 30 min. This flight was awarded the 1971 Mackay Trophy for the "most meritorious flight of the year" and the 1972 Harmon Trophy for "most outstanding international achievement in the art/science of aeronautics".

Pilot and RSO,
6 March 1990
Last SR-71 Senior Crown flight

When the SR-71 was retired in 1990, one Blackbird was flown from its birthplace at United States Air Force Plant 42 in Palmdale, California, to go on exhibit at what is now the Smithsonian Institution’s Steven F. Udvar-Hazy Center in Chantilly, Virginia. On 6 March 1990, Lt. Col. Raymond "Ed" E. Yielding and Lt. Col. Joseph "Jt" T. Vida piloted SR-71 S/N 61-7972 on its final Senior Crown flight and set four new speed records in the process.

1.Los Angeles, CA to Washington, D.C., distance 2,299.7 miles (3,701.0 km), average speed 2,144.8 miles per hour (3,451.7 km/h), and an elapsed time of 64 minutes 20 seconds.

2.West Coast to East Coast, distance 2,404 miles (3,869 km), average speed 2,124.5 miles per hour (3,419.1 km/h), and an elapsed time of 67 minutes 54 seconds.

3.Kansas City, Missouri to Washington D.C., distance 942 miles (1,516 km), average speed 2,176 miles per hour (3,502 km/h), and an elapsed time of 25 minutes 59 seconds.

4.St. Louis, Missouri to Cincinnati, Ohio, distance 311.4 miles (501.1 km), average speed 2,189.9 miles per hour (3,524.3 km/h), and an elapsed time of 8 minutes 32 seconds.

These four speed records were accepted by the National Aeronautic Association (NAA), the recognized body for aviation records in the United States. After the Los Angeles–Washington flight, Senator John Glenn addressed the United States Senate, chastening the Department of Defense for not using the SR-71 to its full potential:

“Mr. President, the termination of the SR-71 was a grave mistake and could place our nation at a serious disadvantage in the event of a future crisis. Yesterday’s historic transcontinental flight was a sad memorial to our short-sighted policy in strategic aerial reconnaissance.”

—Senator John Glenn, 7 March 1990

Succession

Much speculation exists regarding a replacement for the SR-71, most notably aircraft identified as the Aurora. This is due to limitations of spy satellites, which are governed by the laws of orbital mechanics. It may take 24 hours before a satellite is in proper orbit to photograph a particular target, far longer than a reconnaissance plane. Spy planes can provide the most current intelligence information and collect it when lighting conditions are optimum. The fly-over orbit of spy satellites may also be predicted and can allow the enemy to hide assets when they know the satellite is above, a drawback spy planes lack. These factors have led many to doubt that the US has abandoned the concept of spy planes to complement reconnaissance satellites.

Unmanned aerial vehicles (UAVs) are also used for much aerial reconnaissance in the 2000s. They have the advantage of being able to overfly hostile territory without putting human pilots at risk.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>